Linkage by Generically Gorenstein, Cohen–Macaulay Ideals
نویسندگان
چکیده
منابع مشابه
Good Ideals in Gorenstein Local Rings
Let I be an m-primary ideal in a Gorenstein local ring (A,m) with dimA = d, and assume that I contains a parameter ideal Q in A as a reduction. We say that I is a good ideal in A if G = ∑ n≥0 I n/In+1 is a Gorenstein ring with a(G) = 1−d. The associated graded ring G of I is a Gorenstein ring with a(G) = −d if and only if I = Q. Hence good ideals in our sense are good ones next to the parameter...
متن کاملGeneric Free Resolutions and a Family of Generically Perfect Ideals
Beginning with Hilbert’s construction of what is now called the Koszul complex [18], the study of finite free resolutions of modules over commutative rings has always proceeded by a study of certain particular generic resolutions. This has led to information about the structure of all finite free resolutions, as in [5] and [II], and to theorems on the structure and deformation of certain classe...
متن کاملStructure Theory for a Class of Grade Four Gorenstein Ideals
An ideal / in a commutative noetherian ring R is a Gorenstein ideal of grade g if pdR(R/I) = grade I = g and the canonical module HxtsR(R/I, R) is cyclic. Serre showed that if g = 2 then / is a complete intersection, and Buchsbaum and Eisenbud proved a structure theorem for the case g = 3. We present generic resolutions for a class of Gorenstein ideals of grade 4, and we illustrate the structur...
متن کاملGorenstein Algebras, Symmetric Matrices, Self-linked Ideals, and Symbolic Powers
Inspired by recent work in the theory of central projections onto hypersurfaces, we characterize self-linked perfect ideals of grade 2 as those with a Hilbert–Burch matrix that has a maximal symmetric subblock. We also prove that every Gorenstein perfect algebra of grade 1 can be presented, as a module, by a symmetric matrix. Both results are derived from the same elementary lemma about symmetr...
متن کاملNumerically Testing Generically Reduced Projective Schemes for the Arithmetic Gorenstein Property
Let X ⊂ P be a generically reduced projective scheme. A fundamental goal in computational algebraic geometry is to compute information about X even when defining equations for X are not known. We use numerical algebraic geometry to develop a test for deciding if X is arithmetically Gorenstein and apply it to three secant varieties.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1998
ISSN: 0021-8693
DOI: 10.1006/jabr.1998.7461